Röntgen- und Neutronen-Strukturbestimmung des Na₂MnFeF₇-Typs: Eine Trigonale Weberit-Variante

WOLFGANG VERSCHAREN UND DIETRICH BABEL*

Sonderforschungsbereich 127 (Kristallstruktur und chemische Bindung) und Fachbereich Chemie der Universität, Lahnberge, D 3550 Marburg/Lahn, Germany

Received October 25, 1977

Durch Auswertung von Röntgen- und Neutronenbeugungsmessungen an Einkristallen wurde mittels Pattersonmethoden die Kristallstruktur von Na₂MnFeF₇ aufgeklärt: Raumgruppe P3₁21, a = 7.488(2), c = 18.257(6) Å, z = 6, R = 0.032 bzw. 0.031 für 1367 Röntgen- bzw. 568 Neutronenreflexe. Die Struktur enthält wie der Weberit Oktaederschichten $M_{2}^{II}M^{III}F_{10}^{10}$, innerhalb der die M^{II} -Ionen über Oktaederccken verknüpfte Ketten bilden. Im Unterschied zum Weberit ist die Kettenrichtung von Schicht zu Schicht um 120° verdreht, weil das $M^{III}F_{4/2}F_2^{-}$ -Oktaeder zwischen den Schichten die Vernetzung in modifizierter Form bewirkt. Die Röntgen- und Neutronenergebnisse stimmen etwa innerhalb der Standardabweichungen überein. Die Extrem- (und Mittel-)Werte für die Abstände betragen: Mn-F = 2.069-2.091 (2.080) Å, Fe-F = 1.918-1.953 (1.937) Å. Für Na (KZ8) ergeben sich z.T. extrem kurze Achsen F-Na-F = 2.102/2.146 bzw. 2.272/2.421 Å. Die weitgehend analogen Ergebnisse von der isostrukturellen Verbindung Na₂MnVF₇ (a = 7.492, c = 18.261 Å, R = 0.054 für 620 Röntgenreflexe) werden ebenfalls mitgeteilt und diskutiert, sowie Gitterkonstanten von Na₂MnGaF₇, Na₂Fe₂F₇ und Na₂FeVF₇ angegeben. Die Verwandtschaft zu Weberit- und Pyrochlorstruktur wird erörtert.

The crystal structure of Na₂MnFeF₁ was solved by applying Patterson methods to X-ray and neutron diffraction data of single crystals: Space group $P3_121$, a = 7.48§(2), c = 18.257(6) Å, z = 0.032 and 0.031 for 1367 X-ray and 568 neutron reflections, respectively. As in the weberite, the structure contains layers $M_2^{1}M^{11}F_{10}^{3-}$ of octahedra, in which the M^{II} ions form chains of corner-sharing octahedra. In contrast to the weberite the chain direction is rotated from layer to layer by 120°, because the inter layer $M^{11}F_{4/2}F_2^-$ octahedron is linking them in a modified way. X-ray and neutron results are consistent within about the standard deviations. The range of (and mean) values of distances are: Mn-F = 2.069-2.091 (2.080) Å, Fe-F = 1.918-1.953 (1.937) Å. Some of the Na atoms (CN8) show extremely short axes, F-Na-F = 2.102/2.146 and 2.272/2.421 Å, resp. The similar results of isostructural Na₂MnVF₇ (a = 7.492, c = 18.261 Å, R = 0.054 for 620 X-ray reflections) are reported and discussed as well and lattice constants given for Na₂MnGaF₇, Na₂Fe₂F₇, and Na₂FeVF₇. Some relations to the structure types of weberite and pyrochlore are shown.

Einleitung

Im Rahmen von Untersuchungen an quaternären übergangsmetallfluoriden $Na_2M^{II}M^{III}F_7$ (1-4) mit der orthorhombischen Struktur des Minerals Weberit, Na_2MgA1F_7 (5) wurde auch die Mangan(II)-Eisen(III)-Verbindung Na_2MnFeF_7 dargestellt (3, 4). Das Röntgenpulverdiagramm dieser Verbindung zeigte nach unseren Beobachtungen zwar Ähnlichkeit mit dem der Weberite, ließ sich aber nur unbefriedigend orthorhombisch indizieren. Außerdem ergab sich für die resultierende (Pseudo) Zelle ein deutlich von anderen Weberiten abweichendes Achsenverhältnis. Schließlich waren dem Mössbauerspektrum von Na₂MnFeF₇ Hinweise auf zwei

^{*} Sonderdruckanforderungen an D. Babel, Marburg.

verschiedene Eisenlagen zu entnehmen (6), was unvereinbar mit einer Weberitstruktur ist und tatsächlich auch im Gegensatz zum einheitlichen Mössbauerspektrum der Verbindung Na₂NiFeF₇ steht, deren Weberitstruktur wir kürzlich durch eine röntgenographische Einkristallstrukturanalyse bestätigt haben (7).

Die genannten Beobachtungen führten zu der Vermutung, daß Na₂MnFeF₇ in einem eigenen Strukturtyp kristallisiert, der—nach dem praktisch identischen Röntgenpulverdiagramm von Na₂MnVF₇ zu schließen—auch für die bisher nicht beschriebene Vanadiumverbindung zutrifft. Zur Überprüfung und Klärung der Verhältnisse haben wir daher vollständige Röntgenstrukturbestimmungen an Einkristallen der beiden erwähnten Manganverbindungen vorgenommen und dazu im Falle von Na₂MnFeF₇ auch Einkristall-Neutronenbeugungsmessungen herangezogen. Über die Ergebnisse dieser Untersuchungen wird hier berichtet.

Experimentelle Angaben

Darstellung und Analyse der Verbindungen. Pulverpräparate von Na₂Mn M^{III} F₂ (M^{III} = V, Fe) erhielten wir durch zweitägiges Tempern von entsprechenden Mischungen der im Vakuum vorgetrockneten binären Fluoride auf 800°C in Platinampullen unter Argonatmosphäre. Zur Züchtung von Einkristallen verwendeten wir Chloridschmelzen (7NaCl + $MnCl_2 + 4MnF_2 + 2MF_3 \rightarrow 2Na_2MnMF_7 +$ $3NaCl + 3MnCl_2$, wie es an anderer Stelle beschrieben ist (8). Dabei wurde die von uns gewählte Höchsttemperatur von 700°C zunächst 5 h aufrechterhalten, bevor mit 5°/h bis auf etwa 350°C abgekühlt wurde. Nach Auflösen des Schmelzkuchens in Wasser bleib die Hauptmenge der gewünschten Verbindung in Form unterschiedlich-bis 30 mm³großer, teilweise gut ausgebildeter Kristalle zurück. Sie waren in beiden Fällen hell flaschenbraun und durchsichtig und zeigten oft würfeligen oder hexagonal plättchenförmigen Habitus. Da mit dem Polarisationsmikroskop optische Einachsigkeit und senkrecht zur Plättchenebene optische Isotropie beobachtet wurde, war ein hexagonales Kristallsystem zu erwarten. Die chemisch-analytische Überprüfung ergab Abwesenheit von Chlor und gut mit den Pulverpräparaten übereinstimmende Fluor-Werte (Na₂MnVF₇: gef. 46.7% F, ber. 46.69%; Na₂MnFeF₇: gef. 45.8% F, ber. 45.90%).

Röntgenographische Untersuchung und Datensammlung. Laue- und Präzessionsaufnahmen (Mo-Strahlung) ergaben für die Einkristalle trigonale Symmetrie der Laue-Gruppe $P\bar{3}m$ und die in Tab. I aufgeführten Gitterkonstanten. Die Pulveraufnahmen einerseits der Pulverpräparation und andererseits zerriebener Einkristalle stimmten überein und ließen sich mit den angegebenen Zellparametern vollständig indizieren. Aus den ebenfalls Tab. I zu entnehmenden Dichtewerten ergibt sich ein Zellinhalt von 6 Formeleinheiten.

Auf den Einkristallaufnahmen waren lediglich Reflexe 00*l* für $l \neq 3n$ systematisch ausgelöscht. Die danach möglichen Raumgruppen der Laue-Symmetrie $P\bar{3}m$ sind $P3_121$ und $P3_112$ oder deren Enantiomorphe $P3_221$ und $P3_212$.

Zur vollständigen Strukturbestimmung wurden Intensitätsdaten auf einem automatischen Vierkreisdiffraktometer (CAD4, Enraf-Nonius) im $\omega/2\theta$ -scan-Verfahren bei einer scan-Breite von 2° und einer maximalen Meßzeit von 3^m pro Reflex aufgenommen. Die Untergrundmessung erfolgte zu beiden Seiten des Reflexes mit einem Viertel der jeweiligen, von dessen Intensität abhängigen Meßzeit. Die Abmessungen der vorher zu Kugeln geschliffenen Einkristalle sind mit weiteren Angaben über die Meßbedingungen in Tab. I zusammengestellt. Die dort angegebenen Gitter-Kleinsterkonstanten wurden mittels Quadrate-Verfeinerung aus 20 (Na₂ MnVF₇) bzw. 25 (NaMnFeF₇) im oberen Θ -Bereich gemessenen Beugungswinkeln ermittelt. Wie die Intensitätsmessung wurde dabei für

TAB. I

		Na ₂ M	InFeF ₇
	Na ₂ MnVF ₇	Röntgenbeugung	Neutronenbeugung
Gitterkonstanten (und a [Å]	7.492(2)	7.488(2)	
Standardabweichung) c [Å]	18.261(7)	18.257(6)	
Gemessene Dichte d_{Pvk} [g/cm ³]	3.22	3.24	
Röntgendichte $d_{\rm R\delta}$ [g/cm ³] für $z = 6$	3.197	3.256	
Einkristall-Kugelradius R [cm]	0.0175	0.0162	
μR (μ : linearer AbsorptKoeff.)	0.73	0.81	
Meßbereich $\theta(\circ)$ min/max	5/25	3/40	4/38
Begrenzung $h, k \min/\max$	4/7	0/11	0/7
Begrenzung l min/max	-18/18	$-16/16^{a}$	0/21
Zahl der insgesamt gemessenen Reflexe	3041	2536	568
Zahl der gemittelten, symmetrieunabh. Refl.	620	1367	568
davon Nullreflexe (mit $F_{o} \leq 3\sigma_{F_{o}}$)	9	32	0

Gitterkonstanten, Dichten und Röntgenabsorption von Na_2MnVF_1 und Na_2MnFeF_1 , sowie Anzahl der ausgewerteten Einkristall-Reflexe

^a $l = \pm 15$ wurde nicht gemessen.

graphitmonochromatisierte $MoK\alpha_1$ —Strahlung verwendet.

Die zur Datenreduktion einschließlich Lorentz-Polarisation und Kugelabsorption erforderlichen Rechnungen wurden auf einem Telefunken-Rechner TR 4 durchgeführt (9). Die weiteren Rechnungen erfolgten auf einer Anlage IBM 370/145, wobei neben eigenen Programmen vorwiegend mit denen des X-RAY-9-Systems gerechnet wurde (10, 11).

Neutronenbeugungsmessungen. Von einem größeren, uns von anderer Seite (8) zur Verfügung gestellten Einkristall von Na₂MnFeF₇, wurden am Forschungsreaktor FR 2, Projekt 32, der Kernforschungsanlage Karlsruhe auch die Neutronenbeugungsintensitäten von 568 symmetrieunabhängigen Reflexen gemessen (s. Tab. I). Die Wellenlänge betrug 1.0327 Å, die scan-Breite im $\omega/2\theta$ scan war variabel. Bei einer konstanten Monitorzählrate von 2×10^5 Impulsen betrug die durchschnittliche Meßzeit etwa 15^m pro Reflex einschließlich Untergrundmessung.

Strukturbestimmung

Nach vergeblichen Versuchen, durch Anwendung direkter Methoden mit dem Programmsystem MULTAN (12) einen Strukturvorschlag zu erhalten, wurden die dreidimensionalen Patterson-Synthesen ausgewertet, die von der Verbindung Na₂MnFeF₇ einerseits mit den Röntgen-, andererseits mit den Neutronendaten zur Verfügung standen.

Die Verteilung der Pattersonmaxima erlaubte, die Wahl unter den genannten in Frage kommenden Raumgruppen auf P3,21 (bzw. deren Enanthiomorphes P3,21) einzuschränken. Die stärksten Maxima traten in der Schicht uv¹/₄ auf, in der wegen der vorliegenden dreizähligen Schraubenachse auch die zu den Abstandsvektoren symmetrieäquivalenter Atome gehörenden Peaks zu erwarten waren. Außerdem traten starke-in der Neutronen-Patterson z.T. negative-Peaks in den Schichthöhen $w = \frac{1}{6}$ und $\frac{1}{2}$ auf. Da im Gegensatz zu dem praktisch gleichen Rönt-

genstreuvermögen von Mangan und Eisen im Falle der Neutronenbeugung Eisen der stärkste Streuer (9.51 \times 10⁻¹³ cm) ist und Mangan eine negative Streulänge ($-3.87 \times$ 10⁻¹³ cm) besitzt, gelang es, durch Vergleich der beiden Pattersonsynthesen zwischen den inter-Vektoren beider atomaren Übergangsmetallatome zu differenzieren. Unterstützt durch den aus Mössbaueruntersuchungen stammenden Hinweis auf zwei verschiedene, aber gleich häufige Eisenlagen (6), konnte so folgende Besetzung der allgemeinen (6c) bzw. speziellen (3a und 3b) Punktlagen in der Raumgruppe $P3_{1}21-D_{3}^{4}$, Nr. 152 (13) mit den Übergangsmetallatomen Mangan und Eisen wahrscheinlich gemacht werden:

	x	У	Ζ
Mn(6 <i>c</i>)	$\sim \frac{1}{2}$	~\$	$\sim \frac{1}{6}$
Fe1(3 <i>a</i>)	$\sim \frac{1}{3}$	0	$\frac{1}{3}$
Fe2(3b)	$\sim \frac{1}{3}$	0	5

Aus den Pattersonsynthesen und Überlegungen zur Abstands- und Ladungsverteilung ergab sich, daß die Natriumionen ebenfalls in den um etwa c/6 voneinander getrennten Schichten sitzen sollten, in denen sich die Übergangsmetallionen befinden. So gelangt man zu einer kubisch dichtesten Kationenpackung, wenn man einmal 6 Natriumionen in der Höhe $z = \frac{1}{2}$ über den Manganionen einfügt und zum anderen die restlichen 6 Natriumionen um $x = \frac{1}{2}$ gegen die Eisenionen verschoben:

	x	У	Ζ
Na1(6c)	$\sim \frac{1}{2}$	~ ह	~{4 / 6
Na2(3 <i>a</i>)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	$\frac{1}{3}$
Na3(3b)	~\$	0	5

Mit diesem nur die Kationen enthaltenden Strukturmodell ergab eine Kleinste-Quadrate-Verfeinerung (14), die sich auf Skalierungsfaktor und individuelle isotrope Temperaturfaktoren beschränkte, einen konventionellen R-Wert von 0.38 für die 1367 Röntgenreflexe, gegenüber einem Wert von 0.59, der bei statistischer Atomverteilung in azentrischen Strukturen gilt.

Da der zweitstärkste Streuer im Neutronenfall das Fluor (5.65 \times 10⁻¹³ cm) ist, wurde nunmehr versucht, aus der Neutronen-Patterson Anhaltspunkte für die Anionenlagen zu gewinnen und Fe-F-Vektoren einer postulierten Länge von 1.9 Å zu finden. Die ausgewählten und in wiederholten Differenz-Fouriersynthesen überprüften und z.T. veränderten Fluorlagen entsprachen alle der allgemeinen Position (6c) und ließen sich schließlich mit den Kationenlagen zu einem Modell verfeinern, das im Rahmen von R =0.13 mit der Beobachtung übereinstimmte. Diesem Ergebnis lagen individuelle isotrope Temperaturfaktoren zugrunde und die Atomformfaktoren der neutralen Atome (15), die gegenüber der Rechnung mit den Werten für die Ionen eine deutliche Verbesserung bewirkten.

Eine in diesem Verfeinerungsstadium durchgeführte Inspektion der F_o-F_c-Liste zeigte bei einer Reihe niedrig indizierter starker Reflexe, daß die beobachteten Werte F_{0} z.T. über 50% gegenüber den berechneten F_c geschwächt waren. Die danach naheliegende Annahme einer Schädigung durch sekundäre Extinktion wurde gestützt durch einen entsprechend positiven Test nach Darwin (16), bei dem das Verhältnis I_c/I_o der Intensitäten von 100 willkürlich ausgewählten Reflexen gegen I_c aufgetragen worden war. Die daraufhin nach der Methode von Zachariasen Extinktionskorrektur, (17)durchgeführte deren Extinktionskoeffizient E_c (0.25 × 10⁻⁴) als zusätzlicher Parameter verfeinert wurde (18), verbesserte den R-Faktor auf 0.09. Die anschließende Verfeinerung unter zusätzlicher Freigabe anisotroper Temperaturfaktoren für alle Atome, resultierte in konventionellen bzw. gewogenen R-Faktoren von $R = \sum ||F_0|$ – $|F_{\rm c}| / \sum |F_{\rm o}| = 0.032$ bzw. $R_{\rm w} = [\sum w(|F_{\rm o}| -$ $|F_c|^2/\sum wF_c^2|^{1/2}$ -0.037 mit Einheitsgewichten w = 1 für alle 1367 Röntgenreflexe. Ohne Berücksichtigung der 32 Nullreflexe erniedrigten sich die Werte auf 0.030 bzw. 0.036.

In Tab. II sind die resultierenden Atomkoordinaten und in Tab. III die anisotropen

Atom, Punktlage	x	У	z
Fe 1/V 1 (3a)	0.3164(1)/0.3177(5) 0.3159(3)	0	<u><u><u>1</u></u></u>
Fe 2/V 2 (3 <i>b</i>)	0.3362(1)/0.3399(5) 0.3377(2)	0	56
Mn (6 <i>c</i>)	0.4975(1)/0.4957(5)	0.8365(1)/0.8377(4)	0.1701(1)/0.1698(1)
	0.4889(25)	0.8326(25)	0.1717(4)
Na 1 (6c)	0.5011(5)/0.5143(15)	0.8683(5)/0.8723(10)	0.6684(2)/0.6694(3)
	0.4983(18)	0.8686(15)	0.6687(3)
Na 2 (3 <i>a</i>)	0.8488(8)/0.8245(19) 0.8530(24)	0	1
Na 3 ½ (6c)	0.8587(9)/0.8674(22)	0.0374(8)/0.0378(25)	0.8371(7)/0.8382(15)
	0.8646(29)	0.0416(22)	0.8367(14)
F 1 (6 <i>c</i>)	0.7614(5)/0.7557(12)	0.1989(8)/0.1939(15)	0.6039(2)/0.6057(4)
	0.7613(5)	0.1953(9)	0.6043(2)
F 2 (6 <i>c</i>)	0.7963(8)/0.7957(18)	0.9378(5)/0.9346(13)	0.9466(3)/0.9470(4)
	0.7936(11)	0.9367(5)	0.9462(2)
F 3 (6 <i>c</i>)	0.5590(8)/0.5589(18)	0.4234(5)/0.4249(13)	0.0538(2)/0.0541(4)
	0.5570(11)	0.4253(5)	0.0539(2)
F 4 (6 <i>c</i>)	0.8077(5)/0.8092(12)	0.4295(5)/0.4361(13)	0.1899(2)/0.1884(4)
	0.8069(5)	0.4292(5)	0.1895(2)
F 5 (6 <i>c</i>)	0.0683(4)/0.0658(12)	0.3716(5)/0.3766(13)	0.2709(2)/0.2688(3)
	0.0691(4)	0.3740(5)	0.2707(1)
F 6 (6 <i>c</i>)	0.1928(5)/0.1959(13) 0.1934(5)	0.2433(5)/0.2473(12) 0.2453(5)	0.1433(2)/0.1452(4)

0.4294(5)/0.4275(12)

0.4298(4)

TAB. II

AND ADD ADMINICUUDIODAL) DÜD NA MARAE AND NA MAVE 4

^a Jeweils untere linie. Neutronenbeugungsergebnisse für Na₂MnFeF₇.

0.0490(4)/0.0527(12)

0.0508(5)

Temperaturfaktoren der Atome zusam-Gegenüber mengestellt. dem erwähnten Kationenmodell ergab sich nur für Na 2 eine Änderung insofern, als dieses Atom nicht die spezielle Punktlage (3b) einzunehmen scheint, sondern stattdessen unter statistischer Halbbesetzung die allgemeine Position (6c). Für die anderen in speziellen Lagen auftretenden Atome wurde eine derartige Verschiebung nicht beobachtet.

F 7 (6c)

Mit in Tab. II and III aufgenommen wurden die Ergebnisse der Verfeinerung mit den Neutronendaten von Na₂MnFeF₇. Hier wurde

von den aus der Röntgenanalyse resultierenden Werten ausgegangen und gleich zu Beginn der Extinktionsparameter freigegeben, der schließlich mit $E_c = 0.34 \times 10^{-4}$ resultierte. Die zunächst mit R = 0.045 abschließende Verfeinerung zeigte als wesentlichen Unterschied zur Röntgenstruktur lediglich vier- bis sechsmal größere Temperaturfaktoren für Mangan. Aus diesem Grunde wurden in einem weiteren Verfeinerungszyklus auch die Streulängen der Kationen freigegeben. Während sich für Eisen und die Natriumatome Na 1 und Na 3 keine signifikanten Änderungen ergaben, waren

0.8756(2)/0.8730(4)

0.8741(1)

Atom und Punktlage	B ₁₁	B_{22}	B ₃₃	B ₁₂	B _{I3}	B ₂₃
Fe1/V1 (3a)	1.71(4)/1.79(12) 2.07(6)	1.27(3)/0.78(11) 1.53(8)	0.82(6)/0.20(9)	0.64(2)/0.39(6)	0.02(1)/-0.01(3)	0.05(3)/-0.03(7)
Fe2/V2 (3b)	0.91(2)/0.94(10)	0.63(2)/0.60(12)	<u>1.77(6)</u> (0.98(9)	0.31(1)/0.30(6)	0.08(1)/0.05(3)	0.15(7) 0.15(2)/0.11(7)
Мп (6с)	0.88(2)/0.95(6) 0.88(2)/0.95(6)	0.78(2)/0.94(7) 0.78(2)/0.94(7)	<u>2.03(0)</u> 1.07(4)/1.29(6)	0.47(2) 0.38(1)/0.44(6) 0.50(21)	$-\frac{0.12(4)}{0.03(2)/0.01(5)}$	-0.25(7) -0.11(2)/-0.03(6)
Na1 (6c)	<u>2.96(11)</u> /3.31(28) 3 81(22)	<u>1.18(27)</u> <u>3.08(18)</u> /1.82(27) 4.07(45)	$\frac{1.50(20)}{3.91(17)/2.96(20)}$	$\frac{0.39(21)}{1.75(13)/0.70(26)}$	0.10(22) 0.37(10)/0.41(18)	$\frac{0.12(23)}{-0.71(11)/-1.07(17)}$
Na2 (3a)	<u>4.37(26)</u> /5.40(54)	5.04(27)/8.74(81)	6.40(37)/5.52(44)	2.52(13)/4.37(41)	0.39(10)/1.21(21)	<u>0.90(20)</u> 0.78(20)/2.42(42)
Na3 <u>1</u> (6c)	4.29(28)/2.73(62) 5 74(86)	<u>4.30(00)</u> 2.96(29)/1.46(100) 4.06(108)	$\frac{1.90(26)}{0.48(56)}$	<u>2.42(27)</u> 1.87(27)/0.48(67)	0.28(23) 0.74(31)/0.10(49)	$\frac{0.55(46)}{0.85(34)/-0.01(68)}$
F1 (6c)	<u>2.74(15)</u> /2.57(34)	<u>3.96(24)/</u> 3.57(47)	2.05(23)/1.90(29)	<u>1.08(19)</u> /0.72(40)	$-\frac{2.43(16)}{1.39(15)/-1.39(25)}$	$-\frac{1.5/(18)}{0.35(22)}/-0.99(32)$
F2 (6 <i>c</i>)	<u>3.04(12)</u> 4.32(26)/5.52(58)	<u>3.38(17)</u> 3.24(17)/2.72(35)	<u>2.202(11)</u> 2.20(23)/2.51(31)	<u>0.94(17)</u> 2.39(20)/2.92(42)	$\frac{-1.31(9)}{0.74(23)/0.19(37)}$	<u>-0.58(14)</u> <u>1.12(16)</u> /1.09(27)
F3 (6 <i>c</i>)	$\frac{5.02(27)}{4.79(28)/4.65(55)}$	<u>3.43(14)</u> 3.39(18)/3.66(39) 2.60(14)	<u>2.13(9)</u> 2.27(23)/2.28(31)	<u>3.23(20)</u> 2.40(22)/2.32(45)	0.03(13) 0.94(25)/1.48(38)	<u>0.92(10)</u> 1.41(16)/1.78(29)
F4 (6c)	<u>1.68(13)</u> /2.28(39)	<u>3.09(16)</u> /4.07(42) 3.17(14)	<u>3.76(24)</u> /2.87(32) 1.18(13)	<u>2.46(22)</u> 1.71(13)/2.18(34)	-0.36(14)/-0.78(29)	-0.44(15)/-0.80(29)
F5 (6c)	2.33(12)/3.32(38) 2.31(11)	<u>2.79(15)</u> /3.74(39) 2.70(13)	<u>2.12(20)</u> /1.81(27) 2.37(8)	1.57(12)/2.17(34)	$\frac{-0.23(10)}{-0.82(13)/-0.54(25)}$	-0.35(12) -0.98(14)/-0.59(27)
F6 (6c)	$\frac{22}{1.54(13)}$ 1.85(35)	<u>2.84(15)</u> /3.16(34) 2.82(13)	<u>3.96(24)/3.37(33)</u> 2.05(13)	$\frac{1.65(11)}{1.55(12)/1.55(31)}$	-0.91(8) -0.16(14)/-0.43(29)	$\frac{-1.06(9)}{-0.51(15)/-0.33(28)}$
F7 (6 <i>c</i>)	<u>1.74(11)</u> <u>1.74(11)</u>	<u>3.22(15)</u> /4.32(41) <u>3.10(12)</u>	$\frac{5.75(12)}{4.63(24)/4.30(36)}$	<u>1.6(11)</u> 1.61(12)/2.22(32) <u>1.46(10)</u>	$\frac{-0.1}{0.04(15)/-0.05(30)}$ 0.37(10)	<u>-0.33(11)</u> 0.35(15)/0.26(31) 0.67(9)

" Jeweils untere linie. Neutronenbeugungsergebnisse für Na_2MnFeF_1 .

Anisotrope Temperaturfaktoren B_{ij} (Ų) der Atome in der Na $_2$ MnFe F_7 - und Na $_2$ MnV F_7 -Struktur^g

TAB. III

410

VERSCHAREN UND BABEL

diese bei Mangan und Na 2 sehr groß. In einem weiteren Schritt wurden daher die Streulängen der erstgenannten Atome wieder mit ihren ursprünglichen Werten festgehalten und neben den Lage- und Temperaturparametern nur noch die Streulängen von Mangan und Na 2 verfeinert.

Am Schluß dieser Prozedur betrugen die Zuverlässigkeitswerte R = 0.031 bzw. $R_w =$ 0.035. Die Streulänge von Mangan hatte sich von -3.87 auf -1.96, die von Na 2 von 3.62 auf 2.68 geändert. Dieses Ergebnis läßt sich als partielle Mischung von Mangan und Natrium auf den beiden kristallographischen Positionen deuten, obwohl die zu Mn_{0.74}Na_{0.26} für (6c) und $Na_{0.87}Mn_{0.13}$ für (3a) führende Rechnung nicht mehr ganz mit der ursprünglichen Stöchiometrie in Einklang steht. Die Überprüfung der Röntgenstruktur ergab keine Anzeichen für das Vorliegen einer derartigen gemischten Atomverteilung. Da die mit Röntgen- und Neutronenbeugung untersuchten Proben verschiedenen Einkristallzüchtungen aus verschiedenen Laboratorien entstammten, ist anzunehmen, daß der genannte Effekt in der Neutronenstruktur präparationsbedingt ist.

Die Ergebnisse der Röntgenstrukturverfeinerung der Verbindung Na₂MnVF₇ sind zum Vergleich ebenfalls mit in Tab. II und III wiedergegeben. Die Werte, die ausgehend von den resultierenden Na₂MnFeF₇-Parametern erhalten wurden, stimmen weitgehend mit denen der Eisenverbindung überein. Auch hier wurde eine Extinktionskorrektur durchgeführt, die sich jedoch als fast vernachlässigbar herausstellte ($E_c = 0.12 \times 10^{-5}$).

Analog zur Röntgenstruktur von Na₂MnFeF₇ gab es auch hier keinen signifikanten Hinweis auf eine gemischte Atomverteilung Mn/Na, wie durch Freigabe der entsprechenden Atom-Multiplier getestet wurde. Die für Na₂MnVF₇ erzielten Zuverlässigkeitsindizes betrugen R = 0.054 bzw. $R_w = 0.051$ für alle 620 Reflexe (w = 1).

Die Wiedergabe der beobachteten und berechneten Strukturfaktoren in Tab. IV

beschränkt sich auf die Röntgenstruktur von Na_2MnFeF_7 , die mit den meisten Daten und dementsprechend am genauesten bestimmt wurde.

Resultate und Diskussion

Na₂MnFeF₇-Struktur und Vergleich mit Weberit und Pyrochlor

Abb. 1 zeigt eine stereographische Darstellung der Na₂MnFeF₇-Struktur. Die in der Höhe z =der Elementarzelle liegenden Übergangsionen sind mit ihren Oktaedern und denen der Übergangsionen, die in derselben Schicht, sowie in den benachbarten Niveaus ($z = \frac{1}{3}$ bzw. 3) mit diesen verknüpft sind, außerdem in Abb. 2 wiedergegeben. Man erkennt darin, daß die MnF₆-Oktaeder über Ecken miteinander zu Ketten verknüpft sind, während sich die FeF₆-Oktaeder nicht mit ihresgleichen in direktem Kontakt befinden. Stattdessen verknüpfen sie einmal (Fe 2) die genannten Mn-Oktaederketten innerhalb derselben (001)-Ebenen zu Schichten. Zum anderen dienen die Eisenionen (Fe 1), die zwischen derartigen Schichten angeordnet sind, zu deren Verknüpfung in der dritten Dimension [001].

Wie in Abb. 2 veranschaulicht, haben beide Sorten von FeF_6 -Oktaedern zwei terminale, nicht verbrückende Liganden. Diese befinden sich für Fe 1 in *cis*, für Fe 2 jedoch in *trans*-Stellung. Diesem stereochemischen und kristallographischen Unterschied, der sich auch in unterschiedlichen Fe-F-Abständen zeigt, ist die beobachtete Mössbauerspektroskopische Differenzierung (6) beider Eisenpositionen zu verdanken.

Schichten der Zusammensetzung $M_1^{II}M^{III}F_{10}^{3-}$ und des aus Abb. 2 ersichtlichen Aufbaus treten auch in der orthorhombischen Weberitstruktur auf (4, 5, 7). Dort trägt jedoch außer dem einen M^{III} -Ion innerhalb der Schichten auch das andere zwischen den Schichten die beiden terminalen Liganden in *trans*-Stellung. Die restlichen vier Liganden dieses Zwischenschicht-Kations M^{III} , die Brückenfunktion haben und zur Verknüpfung

	FCALC	17	¥5;	127	8 2	2 =	2	11	1		1 2 3	ŝ		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12	1	5 A 3	<u> </u>	197	21	8	2	58	10.01	វត្ត	\$ 2	35	92	20	• 5	22	101 52	ŦŔ	24	238	52
ONEN	FURS			242	38	96	23	112	==	:::	10			193	82	9	26	97 97		161	22	171	;77	55	53	38	35	25	90 100	* ~	*1	\$ %	22	563	199	80
LEKTR	۔ لہ 4 ک	• ~ m	***	0 ~ œ • • •	• • •	===	4 1 4 1 7		~ ~ ~			≂ 1 ^	.		~ ~ 0 0		000	8 8	22	210		-	• • •	- 8 1	• 1	1 13	4 N 1 O	- ~ ~ ~	n 4 N N	~ ~ ~ ~	9 8 7 7	ci 2 11 2	212	N n m m	m m m	0 F M M
816 E	FCALC	541	102	111	23	228		154	23.5	, i i	191	181		173	28	203	12 7	÷ 2	195	216	120	6	* :	116	£ 1	ŝŝ	57	13	ŝŝ	105	13	119	65	120	2 * 2	23
T VON	Sena	111		1.78	53	221 63	16	153	232	128	981	223	190	99 <u>6</u>	28	661	21	261	161	312	118	102	2° 1	112	22	11	59 S	86 79	194 192	54 1 48	38	<u>8</u> 2	154	122	108 30	10 63
INHAL	× 0	1 0	- ~ ~			8 0 	¥2 	112	*1 1) 	- M M -	* * *) ~ 0 ~ 0	. • g • • •	2 11 2	51	10-1-1 10-1-1	n n 1	~ ~	***	• 0	=1	121	• •	~ ~ 4 4	4 V 4 4	0 F	4 4	23 **	23	1° **			n 0 r		5 12 5 12
N ZELL	FCALC	801	<u> </u>	28	11	F 3	35	31	5		FCALC 1110		582	1082	23	\$	1102	<u>د</u> ۲	365	245	43	165	525	130	198	101	* 61	1096	<u>۾ ۽</u>	83 176	687 78	\$: ; ;	592	¢ 6 6	200
EINER	6085	10	1 22	:=8	: :	2 95	21 11	101	89	ء •	F085	773	282	1087	109	26	1133	- 2 :	368	255	21	190	52	88 191	208	6 99	161	1124	7 F	183	489 14	925 82	22 .	590	282	178
RT AUF	3 F	80 N N N	232	121	0 8 E	9 6 9 6	4 v 4		8) 8)	T	. ن لـــ ۲۰۰ م	- N F	•••	• • ►		21	111	1 0.			**	æø ⊸	21	1 12	1 1	- u -	~~	**	9 F N N	80 0* N N	2 10 2 11	2 12 2 13	1 1 1 N N 1	 	n e n n n n	4 F
ORMIEI	2140	11	***	1 2 2	15=	11	28	227	8	2	្ពែ		5	, 9 9	z,		125			222	128	121	318	73	567	32	8 2 I	007	222	32	59	1 E	1	193	125	9 1
eF, N	FOBS	1	223	- 8 2	121	\$2	5	:51	5	118	926	85	3	295	329		125	-	E DB C		i Sic	129	526	4 1	182	9 L 8 M	862 118	198	262	358	161	129	286	831	285	916
MnF	C 		~ + 1 ~ ~ 1			5	21	1				~ a a a a a	11:		* C 8 0	• • •	• • •	I	-	0000	• m •	- m 	•► E	• <u>-</u>	0 11 0	61 () 0 ()		7 7	**	**		21	22	4 C -	~~~	* * ~ ~
ÜR Na	CALC	52	239	14	192	ج ؟	137	: #2	2	13:	123	55	22	រុះខ	1.0		27	6 <u>1</u>	÷.	212	2		CALC 259	1.12	124	146	141	1493	6 5	171	277	52	e e	194 149 216	59 661	94 312
REN F	F085 F	167	.	613	85	31	191	:32	121	8	* * 2 2	601 192	:::	223	F	Ţ,	6126	6° 11	5	122	6	•	FIAS F 266	1767	322	152	52 C	1559 166	94 281	11	284	72	297	282	91	309
FAKTO		• ~ ~ ~	**	0 ~ 3 ~ ~ ~	, o >	11	11	- 0 -	. ~ .	n 4 1	∩ 40 ► 8 ≪ 40		2 2 2 2 2 2		 	,	1 T I	r 0 7	- a c o	: 7 <u>1 1</u> - 0 0 0	9 12	Ï	ш÷ ¥<	-1 N - 1 N	- - -		, ,	23	12 M	1	 	~ * 		~ 8 0	322	21
UKTUR	CALC	112	523	661	289	1.04	1	122	2:	581	522	25	22	221	25	Ţ	59 59 79 79	\$ 111	57	559	-1 ;			117	655 580	42-1	213	179	200	182	12	53	431) 351	295 472 81	37	247
ENSTR	F085 F	211	8 4 3	138	283	55 289	11	8.6	82	184	323	8 2 2	121	1 ° 3	1.5	12	53	15 6 10:6	2 2 2 2 2 2		-		214	139	570	1-24	221	221	212	272	8 4 4 1	4 - 2 4 5 8	11	587	223	148
ÖNTGI	 ו	- ~ ~	* * * *	0 ~ 0 0 00 0			111	19.0			****	- e a o o c	1	121 6 6 6	11		-~~	ه ب 2 ک	•	- • • <u>·</u>	: i	-		N F	* * 0 e	.	во о - э с	01 0	20	<u>1</u> 0			5 9 1 1	~ @ @	S=2	121
0F.) R	CALC	3 <u>8</u> 2	12		113	8 :	123	121	: : ·	12		211		533			16.2	127	453 1 453	3250	1	123	1.25	55	421 794	467	45;	262	2	241	117	11	324 193	322	851 159	1339
erre (1	F()85 F	121	£2:	;;;	117	6	12	. 96	57		81 28 29	115	1 80 C		1		1 991 991	82 139	447	1.16 5357	12	5	1595	2	42	. 9 . 1 . 2	435	238	32	56 0 0 0	3264	5E	918 149	221	856 162	1359
ECHNI	ہ بـ ہ بد		323		1	N 7				' = : 1 = :	= 2 2 = 2 2	1 22:	- ~ -	- * *		: . ,		6 C C	e e a s	e⊷æ¢ . ⊂ (122	2 2 -			л с 	~ 1	? 2	==	11	~ ~ ~		4 ¥ N ~	0 ~ « N ~ ~	5 C C	212
ND BEH	CALC	523	- 3	7 - 7		CALC	376	0 8 4 1 4 4 4	5.5	225	776 124 619	100	823	10.4		12	656 284 284	328	153	53	122		376	424		354	946	5	\$ 5	217	55	241 905	27,	625	552	22
וח (<i>"</i> דנ	1085	\$? P	15	21	-	FORS	110	424	26	155	272 571 638	729	315	22.5	1	26 T	619 289	327	141	52	1	585	222	2 1 4	÷ ;	35.	185	2 3	1	222	; ; ;	196	111	54 191	26.1	
ETE (10		•••	- • :	9 T T T	T			~~ •	, .	0 m	* * <u>9</u> 5 : 0	= 2:	10 	-~-	• • •		- 20 e	211	22		- 14 -	•	~ * ~ ~ ~ ~ ~	200 1 N O	31	22	127			-	o ∼ œ ` ~ ~ ~	 	11 5	<u>2</u> 2-		· 4 4
ACHTE		FCALC 1126	290U 1753	1595 J07			36	461	22	22	191	23	27	120	. 2 2	131	7 92 7 92 7 92	507	142	135		58	1 8	526	212	1	1	2039	225	121	1118	275	225	657 F07	38	32
ВЕОВ	•	F085 F	2655 1794	1651	51		52	1	ŝ	112	346 167 1138	23	511	127	32	:23	56 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	513 418	2	84	19	55	ç 3 <u>1</u>	366	2215	11	60	2013		1	1084	261	12	64 G	122	22
	±		40 0 è	· - 15			• - •	••;	:::	22	*0-	***	9 F 7 8	8 8 9 N N N	:=:	22	4.	~ ~		 	•••				• • •			- ao a	22	22			-	~ ~ ~		222

TAB. IV

VERSCHAREN UND BABEL

412

							_											
28628414478		FCALC	3g=8	52 C C C C C C C C C C C C C C C C C C C	22.23	1225	2253	រត្តដ ះ	3233	:3 % =	595 595 595 595 595 595 595 595 595 595	្តនេះ	FCALC	57	\$ **\$	372:	11.21 11.21	12 -
2785353535353	91 +	100 F	5665	284 67 117	222	1224	***	1222	121	3643	592 111 111	;≅≈ ≓ ‡	50.5	125	2283	81	-5-84	*==
₩₩₩₩₩₩₩₩₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩			200	~ # Ø : U E D L	1222	to=~~	*****	****	222	0 - 0 F 1 0 0 0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		 	• • •	4 4 4 H	• • • • • • • • • • • • • • • • • • •		***
\$68285 <u>5</u> 55555		FCALC 13 244 769	: ° £ [583 11 12	385	1912	591	8235	:::::	2233	517 121		<u>-</u> 343	25	108 88 108 108	1283	2917	16.
110 K 2 5 6 6 4 1 5 11 6 6 7 5 6 6 4 1 5 11 6 7 7 6 7 6 6 7 1 6 7	₽ ₽	FOAS 246 775	e le cel	1 722	ge • 3	222	1168	2822		1998 1998	417 68 68	; 1 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	534 55	72	108 1061 1052		2223	199 99
**************************************	-	75991	5000	► E 0 0	1222	140	v m # vn 4		2222	- N N N	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 ~ E 0 Q	1221		~~~~) e > a (*==:	110
235 24 25 25 25 25 25 25 25 25 25 25 25 25 25	261	វខ្លន្នជ	;e\$;	1634	128	13876	12289	181	\$ <u>4</u> 4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Į23;	2385	25 35 78		FCALC 150	1321	- 56 2 3	587
0 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	82 E	22 20 20 20 20 20 20	;c7\$	2965	128	. <u>.</u>	1111	5 7 <u>7</u> 3	(¢ <u>3</u> ¢(2228	1 621	12055	5.42	~	201 201 201	13233		2022
	4 4 4 4 1 4		:222				1111-	- ~ ~ + ; • • • • •	· ~ ~ .	••••	2220		* F F			1 1 4 1 1 2 0 0 0 0		200
128888255785	211		2338	333	112	52 23	1738	1888	r 233	8563	129	19248	gar:		282	•=\$4	2852	222
38 179 251 251 251 251 254 264 216 216	319	822 822 828	2322	122	5555	22231	1247	12851	135	52 52 86	226	2122	3923	181	5 m 1	126	1122	***
~ @ 6 0 1 N M 4 9 0 1	~~~	,	* 2 1 2			4444 40 0 M (* * * * * ·	14400 14400		••••••	• 9 1	N740-	N M 41	- - -	* * <u>-</u>	1264		***
77 520 1926 181 182 182 182 182 182 1209 1209 87 87 87	474 59 88	1961 192 157	532 532 532 545 545 545 545 545 545 545 545 545 54	225	11.12	÷ = = 3	2322;	2.45	12 8 2	22 261 261	182 237 47	1-1 1-1 223 223	322	[] 5	ų 12	128	529 128	£ 14
75 219 72 72 560 580 580 580 580 580 580 580 580 580 58	184 58 58	365 787 154 104	251 251 296	661	1121	s513	612 S	14 82 85 85	62 8 9	14 18 18 176	230	10 18 22 22 22 22 22 22 22 22 22 22 22 22 22	208	191	38	630 128 124	48 769 122	40C
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	121	10 ° 7 °	* * * * *	- T. 7 _		2 	m r a a r 4 <b>5 4 4</b> 4	- 0 ° _ :	1937 1937	* * * * * • · - *				v r 4 1 9 c		4 0 0 0 0 0 0 0 0	۰۰۰۰ 22°	201
282 282 282 282 282 292 292 202 202 202 202 202 202 202 20	117 191	151	25521	1.55	2537	142	21. 21. 21.	202	205	298 219 219	236	22 22 22 22 22 22 22 22 22 22 22 22 22	102	122	51	284	145	1525
0101111 11110 11111 11111 11111 11111 11111 11111 1111	6.9	195 12		- 9 T I	:::::::::::::::::::::::::::::::::::::::	4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	282 1	1221	261	24 211 211	232 232 272	34E84	611	218	619	278 278 112	255 198 198	55 191 191
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	122	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	****		1222		**** ****	-=•]; ++++	2254 * * * *	•••• •••		~ » • 3 :	222	20- - 0 4		 	e 010 e 110 e 150	4 4 9 C
T	10	12 4 F 6	*363	822		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1834		5323	2-4 55 928	17 183 724	19451	12.1.1	200	5=4	1221	8555	11 9 <u>6 5</u>
2012 2012 2012 2012 2012 2012 2012 2012	HEE	216	<u> </u>	110	15 H H		2 4 9 A -	1525	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ະ ເອີຍ ເອີຍ ເອີຍ ເອີຍ ເອີຍ ເອີຍ ເອີຍ ເອີຍ	65 628 628	98 32 152 152	166	128	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 C N 8 F 1 1 1	8 1 1 1 1 1 2 1 1 1 2 1	38 128 445
***************************************	525		**** ~~**	***	7 * * * *	4400 44			1120	****		00000 2~ E U	.:22	* : - • • •	~~*	~~~~	4 I I I 1 I I I	
212	141		×272	2112	122	1189	291	1212	*15	194	891 891	218 218 218 218 218 218 218 218 218 218	213	161	* 13	141	2522	5232
264 264 255 251 251 251 271 271 271 271 271 271 271 271	745 199	575 77	135	225 11-25 11-25	243	57151	155	292 212	22 181 181	2822	167	181 172 22:-	575	921 921	550 62 62	151 133 133	11 12 12 12	21 141 17
4 4 4 4 4 4 4 4 4 4 6 6 6 8 6 8 6 5 7 7 7 7 7 7 6 6 6	~~~ ~~~		• 323	122°-		 	* 2 2 2 2 • • • • •	240-re	~~~~	****	322		- N m + F	0 ~ 0 0 0 0		8 1 8 1 8 1 8 1 8 1 8 1 8	0 - N M	4 4 4 6 F 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
259 259 259 259 259 259 233 233 233 233	31	22233	282	112	7883	250.95	55153	69329	2252	6 6 7 °	129	4.835	13 A 1	235	F 6 -	÷ • • • • •	38 28 29 29	3112
70 25 25 25 25 25 25 25 25 25 25 25 25 25	5 5 2	1955 S	274 279 128	292	5555	252	\$52§		12.95	1248	361	22533	12.51	202	នទ្វីន	;;:::	225 8 E E	2 33 2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9 7 7 9 9 9		~~~~		2222	0 - N - N - N - N - N - N - N - N - N -	****	9333	1110 8 8 8 8 8		• • • • •			- ~ ~	9999		==== 9999	



ABB. 1. Stereobild der Na₂MnFeF₇-Struktur. Die Kationen sind in Form ihrer thermischen Schwingungsellipsoide (50% Aufenthaltswahrscheinlichkeit) dargestellt.



ABB. 2. Ausschnitt aus dem Oktaedernetz der Na₂MnFeF₇-Struktur:  $Mn_2FeF_{10}^{3-}$ -Schicht mit verknüpfenden Zwischenschicht-Oktaedern FeF_{4/2}F₂⁻ (um Fe1).

der  $M^{II}$ -Oktaederketten benachbarter Schichten dienen, liegen daher an gegenüberliegenden parallelen Kanten des Oktaeders. Dementsprechend laufen auch alle  $M^{II}$ -Oktaederketten in den Weberiten parallel (und zwar in Richtung [100] der orthorhombischen Struktur). In der Na₂MnFeF₇-Struktur liegen wegen der cis-Stellung der terminalen Liganden des Zwischenschicht-Kations Fe 1 dessen verbrückende Liganden an 60 bzw. 120° gegeneinander verdrehten Kanten des Oktaeders. Derselbe Winkel tritt daher zwischen den Mn-Oktaederketten in benachbarten Schichten auf, in Übereinstimmung Vorliegen einer mit dem dreizähligen Schraubenachse. Abb. 3 veranschaulicht diesen Hauptunterschied zwischen Weberitund Na₂MnFeF₂-Struktur, der nur in der unterschiedlichen Verknüpfung und Orientierung von sonst analogen  $M_2^{II}M^{III}F_{10}^{3-}$ Schichten besteht. Es sei hier nur wiederholt, daß ähnliche Oktaederschichten einerseits in den hexagonalen Wolframbronzen und andererseits in den Pyrochloren vorliegen (4). In diesen Raumnetzstrukturen haben jedoch alle Liganden Brückenfunktion und werden zur

Verknüpfung der Schichten, die in beiden Typen wiederum unterschiedlich erfolgt, herangezogen.

Die Verwandtschaft der Na₂MnFeF₇-Struktur mit den Weberiten auf der einen und den Pyrochloren auf der anderen Seite geht auch aus Abb. 4 hervor. Sie zeigt die-für Weberit und Na₂MnFeF₇ idealisierten-Kationengitter in analogen Aufstellungen, die der Na₂MnFeF₇-Zelle entsprechen. Für den mit  $a_{kub} = 10.25$  Å kubischen Pyrochlor NaCdNi₂ $F_7$  (2) z.B. sind die Abmessungen einer solchen Zelle  $a_{\text{hex}} = a_{\text{kub}}/2^{1/2}$ = 7.248 Å,  $c_{\text{hex}} = a_{\text{kub}} \cdot 3^{1/2} = 17.45$  Å. Für den Weberit Na₂NiFeF₇ (7) ergeben sich aus der in Abb. 4 mit eingezeichneten Orientierung der orthorhombischen Zelle ( $a_{\rm rh} = 7.245, b_{\rm rh} =$ 10.320,  $c_{\rm rh} = 7.458$  Å) entsprechende Werte zu  $a_{\text{hex}} = a_{\text{rh}} = 7.245 \text{ Å bzw. } r_{[111]}/2 = 7.325 \text{ Å}$ (mit einem Winkel von 119.6° statt 120° zwischen orthorhombischer a-Achse und Raumdiagonale r) und  $c_{\text{hex}} \triangleq 3 d_{(011)} = 18.135$ Å. In allen drei Strukturen liegen die Kationen in Schichten parallel (001), die im Abstand von  $c_{\rm hex}/6 \approx 3$  Å aufeinander folgen. Die Atomanordnung in ihnen entspricht der



ABB. 3. Schematische Darstellung der Verknüpfung benachbarter  $M_{1}^{11}M^{111}F_{10}^3$ -Schichten über die Zwischenschicht-Oktaeder  $M^{111}F_{4/2}F_2^-$  mit (a) *trans*-terminalen Liganden in der Weberitstruktur; (b) *cis*-terminalen Liganden in der Na₂MnFeF₇-Struktur.



ABB. 4. Vergleich der Kationengitter von Na₂MnFeF₇, Weberit- und Pyrochlorstruktur in analogen Aufstellungen.

Sequenz ABC einer kubisch dichtesten Packung, wenn man von der Verschiedenheit der Kationen absieht. Differenziert man zwischen den Alkaliionen Na (inclusiv Cd im Falle des Pyrochlors) auf der einen Seite und den Übergangsmetallionen (M) auf der anderen, wechseln jeweils Schichten der Zusammensetzungen  $MNa_3$  und  $M_3Na$ einander ab. Daher muß sich die genannte Sequenz—wegen der veränderten Zusammensetzung nunmehr mit A'B'C' bezeichnet wiederholen, bevor Identität eintreten kann.

Die alkalireichen Schichten  $MNa_3$  (A, C, B'in Abb. 4) haben in allen drei Strukturtypen die gleiche Anordnung. Dies gilt unter Vernachlässigung der Differenzierung Ni/Fe auch für die alkaliarmen Schichten  $M_3Na$  (B, A', C') von Weberit- und Pyrochlorstruktur. Von diesen beiden verschieden ist jedoch die Atomanordnung in den alkaliarmen Schichten der Na₂MnFeF₇-Struktur. Sie entspricht im Vergleich zum Pyrochlor einer Translation um a/2 abwechselnd in den verschiedenen Schichten in den Richtungen [100], [110] und [010]. Der zusätzliche Unterschied zum Weberit mit seinen parallelen  $M^{II}$ -Ketten ergibt sich aus der schon erwähnten wechselnden Orientierung dieser Ketten im Na₂MnFeF₇, die der dreizähligen Schraubenachse folgt.

## Diskussion der Abstände

Tab. 5 bringt eine Zusammenstellung der wichtigsten interatomaren Abstände und Winkel in den Verbindungen Na2MnFeF7 und Na₂MnVF₇. Da die mit in Tab. 5 aufgenommenen Ergebnisse der Neutronenuntersuchung an der Eisenverbindung im Rahmen der Standardabweichungen praktisch durchweg mit den Röntgenresultaten übereinstimmen, kann sich die Diskussion auf die Röntgenangaben beschränken. Im wesentlichen auch Übereinstimmung besteht zwischen den interatomaren Abständen in der Eisen- und der Vanadiumverbindung, so daß die letzgenannte-für die auch kaum Vergleichsdaten anderer Vanadiumverbindungen

zur Verfügung stehen—weniger ausführlich zu erörtern ist.

Die Mn-F-Abstände in Na₂MnFeF₇  $(Na_2MnVF_2)$  schwanken nur wenig um einen Mittelwert von 2.080 Å (2.074 Å), der noch etwa der Größe im KMnF₃ (2.093 Å) (19) entspricht, aber deutlich kleiner ist als im MnF₂ (2.12 Å) (20). Eine Verzerrung der Oktaeder zeigt sich in den Abweichungen von den zentralen 90°-Winkeln, die bis annähernd 10° ausmachen. Die Brückenwinkel Mn-F-Mn in den mehrfach erwähnten Oktaederketten betragen 128.8° (Na₂MnVF₇:130.5°) und sind damit die kleinsten Winkel der Oktaederverknüpfung in diesen Strukturen, kleiner noch, als für Ni-F-Ni (131.9/136.3°) im Weberit Na₂NiFeF, beobachtet (7). Die Verbrückungen der Mn^{II}-Ketten mit den M^{III}-Ionen erfolgen unter etwas größeren Winkeln Mn-F-Fe(V) bis 144.8° (142.6°), die in der Nähe des für die Pyrochlore typischen Brückenwinkels von 141° liegen (21).

Die Oktaeder um die  $M^{III}$ -Ionen sind weniger als beim Mangan in Bezug auf die Winkel-Variationsbreite F-M^{III}-F etwa 90  $\pm$  5°—aber etwas deutlicher hinsichtlich der M^{III}-F-Abstände verzerrt. Beim Ion Fel, das zwischen den Mn₂FeF³⁻₁₀-Schichten sich befindet, ist dies ausgeprägter der Fall als bei Fe2 innerhalb der Schichten. Die kürzesten Abstände,  $Fe1-F_t = 1.918$  Å, treten zu den cis-ständigen terminalen (t) Liganden auf. Im Vergleich dazu beträgt der mittlere Abstand zu den brückenbildenden (b) Fluoridionen Fe1- $F_{\rm b} = 1.939$  Å. Praktisch derselbe mittlere Wert wird bei den Brückenliganden des zweiten Eisenions mit  $Fe2-F_{h} = 1.937$  Å beobachtet. Jedoch befinden sich in Umkehrung der Verhältnisse von Fe1 die hier transständigen terminalen Liganden in einem größeren Abstand,  $Fe2-F_t = 1.953$  Å. Obwohl bei der Vanadiumverbindung diese Anomalie nicht beobachtet wird, sondern in beiden Oktaedern die kürzesten Abstände V1- $F_{\rm t} = 1.904$  Å bzw.  $V2-F_{\rm t} = 1.914$  Å bei den terminalen Liganden auftreten, während die verbrückenden mit Mittelwerten von  $V1-F_{b} =$  1.939 Å bzw.  $V2-F_b = 1.944$  Å erwartungsgemäß weiter entfernt sind (und zwar um einen Betrag von 2-3 $\sigma$ ), ist der Effekt bei Na₂MnFeF₇ sicher reell. Er wird nicht nur durch die Neutronenbeugungsergebnisse bestätigt (Fe1-F_t = 1.914 Å bzw. Fe2-F_t = 1.951 Å, Fe1-F_b = Fe2-F_b = 1.934 Å), sondern auch durch den analogen Befund beim Weberit Na₂NiFeF₇ unterstützt. In dieser Verbindung ist der gemittelte Abstand der transständigen terminalen Liganden mit Fe-F_t = 1.946 Å ebenfalls größer als Fe-F_b = 1.927 Å zu den Brückenionen (7).

In den vergleichbaren Schichtstrukturen der Verbindungen  $A \operatorname{FeF}_4$  (A = K, Rb, Cs), in denen das Eisen wegen der zweidimensionalen Oktaederverknüpfung wie in der Weberit- und z.T. Na₂MnFeF₂-Struktur zwei terminale trans-Liganden besitzt, sind die Abstände jedoch ausgeprägt zugunsten einer Verkürzung bei den endständigen Anionen aufgespalten (Fe- $F_t \approx 1.85$  Å, Fe- $F_b \approx 1.95$ Å) (22, 23). Für die Umkehrung dieser Verhältnisse bei Na₂NiFeF₇ und Na₂MnFeF₇ müssen neben veränderten Kontrapolarisationseinflüssen---kleinere (Na⁺) bzw. niedriger geladene (Ni²⁺, Mn²⁺) Gegenionen (7)-vielleicht auch Packungseffekte verantwortlich gemacht werden. Es ist allerdings schwer verständlich, warum in der isostrukturellen Verbindung mit dem im Vergleich zu Fe³⁺ gleich großen V³⁺ dann andere Gegebenheiten herrschen sollten.

Die Mittelwerte Fe1-F = 1.932 Å und Fe2-F = 1.942 Å in Na₂MnFeF₇ stimmen gut mit Fe-F = 1.933 Å in Na₂NiFeF₇ (7), 1.932 Å in Rb₂NaFeF₆ (24) und 1.95 Å in Cs₃Fe₂F₉ (25) überein, sind aber etwas größer als in den genannten Schichtstrukturen AFeF₄ mit Fe-F = 1.910/1.918/1.928 Å für A = K/Rb/Cs (23). Mit den Summen der tabellierten Radien (26) sind die aufgeführten Abstände am besten in Einklang zu bringen, wenn man statt  $r_F = 1.33$  Å (KZ6) den für KZ2 angegebenen Fluoridionen-radius von  $r_F$ = 1.28₅ Å verwendet. Dies führt zu einem Abstand von Fe-F = 1.930 Å. Die in beiden

$VF_7$
Va ₂ Mn
UND N
a ₂ MnFeF ₇
IL IN N
WINKE
E UND
ABSTÄNDI
OMARE /
INTERAT

TAB. V

		Na ₂ Mi	nFeF ₁			Na ₂ M	InFeF ₇	
		Röntgen	Neutronen	Na ₂ MnVF ₇		Röntgen	Neutronen	$Na_2MnVF_{\gamma}$
Mn-F1		2.069(4)	2.117(10)	2.091(7)	F1-Mn-F4	85.3(2)	86.1(4)	86.5(4)
-F3		2.074(4)	2.036(9)	2.071(7)	-F6	91.2(2)	88.1(6)	90.3(4)
-F4		2.091(4)	2.039(14)	2.076(10)	F7	83.1(1)	82.7(4)	83.9(3)
-F6		2.088(3)	2.134(15)	2.077(10)	-F7	93.0(1)	91.3(8)	92.7(3)
-F7		2.074(4)	2.066(22)	2.056(10)	F3-Mn-F4	95:9(2)	98.8(6)	95.2(4)
-F7'		2.081(3)	2.071(21)	2.071(11)	-F6	87.6(2)	87.0(5)	88.1(4)
Mn-F _{Mittel}		2.080	2.077	2.074	-F7	99.8(2)	99.8(9)	98.4(4)
MALE F-FMIn		2.749(5)	2.769(5)	2.782(13)	-F7	84.1(2)	86.0(5)	85.0(4)
		2.937	2.932	2.930	F4-Mn-F7	95.3(1)	96.3(7)	94.3(4)
Fe(V)1–F2 _{term}	2x	1.918(4)	1.914(4)	1.904(9)	-F7	84.4(1)	86.0(7)	84.5(4)
-F1	2x	1.925(3)	1.922(3)	1.937(7)	F6-Mn-F7	94.9(1)	92.9(6)	94.2(3)
-F3	2x	1.953(4)	1.946(4)	1.941(9)	-F7	85.1(1)	84.2(7)	84.9(4)
Fe(V)1-F _{Mittel}		1.932	1.927	1.927	F1-Mn-F3	177.0(1)	174.6(10)	177.3(4)
Fe(V)2–F5 _{term}	2x	1.953(3)	1.952(2)	1.914(6)	F4-Mn-F6	176.5(1)	174.2(5)	176.6(3)
-F4	2x	1.936(4)	1.930(5)	1.937(12)	F7-Mn-F7	176.1(1)	173.5(7)	176.4(2)
-F6	2x	1.938(4)	1.937(5)	1.951(12)	F1-Fe(V)1-F2 2x	95.0(2)	94.8(3)	95.2(5)
Fe(V)2–F _{mittel}		1.942	1.940	1.934	-F2 2x	85.6(2)	84.8(2)	84.3(5)
EalVIE F-FMIn		2.611(6)	2.587(6)	2.576(13)	-F3 2x	93.3(2)	93.3(2)	94.5(5)
L C( T / J 6' F-F Mittel		2.738	2.733	2.729	-F3 2x	86.1(2)	87.1(3)	86.0(5)
Na I-F5		2.272(5)	2.289(14)	2.276(13)	F2-Fe(V)1-F2	88.5(3)	89.8(4)	88.0(7)
-F5'		2.421(6)	2.396(14)	2.436(15)	-F3 2x	93.3(2)	93.1(3)	93.3(5)
-F2		2.505(7)	2.512(13)	2.434(16)	Fe-Fe(V)1-F3	84.9(3)	84.1(4)	85.4(7)
-F1		2.547(5)	2.535(9)	2.464(10)	F1-Fe(V)1-F1	179.2(4)	179.4(4)	179.3(8)
-F4		2.635(5)	2.634(7)	2.653(9)	F2-Fe(V)1-F3 2x	177.9(3)	176.7(4)	178.3(6)
-F7		2.658(5)	2.675(9)	2.758(11)				
-F3		2.704(6)	2.717(11)	2.795(14)	F4-Fe(V)2-F4	85.7(2)	86.3(2)	84.3(5)
-F1'		3.028(6)	3.042(11)	3.037(13)	F5 2x	93.6(1)	93.2(1)	92.6(3)
Na I-F _{Mittel}		2.596	2.600	2.607	-F5 2x	85.9(2)	86.2(2)	86.1(4)
Na2-F2	2х	2.514(7)	2.506(16)	2.675(16)	-F6 2x	94.1(1)	93.8(1)	94.9(3)
-F5	2x	2.678(3)	2.690(3)	2.742(8)	F5-Fe(V)2-F6 2x	94.1(2)	93.8(2)	93.5(4)
-F6	2x	2.683(4)	2.701(5)	2.695(7)	-F6 · 2x	86.3(1)	86.7(1)	87.7(3)
-F3	2x	2.867(7)	2.888(17)	2.712(16)	F6-Fc(V)2-F6	86.0(2)	86.1(2)	85.9(4)

418

# VERSCHAREN UND BABEL

Na2–F _{Mittel}	2.685	2.696	2.706	F5-Fe(V)2-F5	179.4(2)	179.2(3)	178.3(7)
No 2 E1	f 2.102(12)	2.083(25)	2.102(28)	F4-Fe(V)2-F6 2x	179.9(1)	179.9(1)	179.1(3)
1400-F 2	2.146(13)	2.168(26)	2.178(29)				
۲ ۲	j 2.535(7)	2.506(21)	2.495(18)	Fe(V)1-F1-Mn	144.8(2)	144.8(6)	142.6(4)
0.1-	\ 2.785(8)	2.793(24)	2.759(23)	-F3-Mn	135.3(2)	135.4(7)	135.5(5)
57	( 2.584(9)	2.596(24)	2.592(23)	Fe(V)2–F4–Mn	136.2(2)	136.4(5)	136.1(4)
+ <b>1</b>	( 2.829(7)	2.793(24)	2.842(17)	-F6-Mn	137.5(2)	138.3(5)	138.8(9)
67	J 2.638(7)	2.599(16)	2.608(19)	Mn-F7-Mn	128.8(2)	130.1(1)	130.5(4)
- 1-	3.142(7)	3.171(15)	3.128(19)	F5-Na1-F5	175.7(2)	175.7(4)	174.4(4)
Na3-F _{Mittel}	2.595	2.589	2.588	F2Na3F2	165.5(3)	162.9(8)	163.9(8)

Manganverbindungen  $Na_2MnM^{III}F_7$  beobachteten Mn-F-Abstände bleiben aber auch noch hinter der analog berechneten Radiensumme Mn-F = 2.11₅ Å zurück.

In der Na₂MnFeF₇-Struktur treten drei kristallographisch verschiedene Natriumpositionen auf: zwei zwischen den Mn₂FeF₁₀³⁻-Schichten (Na1, Na2) und eine in dieser Schicht (Na3). In allen drei Fällen beträgt die Koordinationszahl für Natrium 8.

Für Na2 kann das Koordinationspolyeder als stark verzerrter Würfel angesprochen werden. Die Abstände schwanken hier bei Na₂MnFeF₇ stärker als bei Na₂MnVF₇ (Werte in Klammern), und zwar im Bereich Na2-F =2.514-2.867 Å (2.675-2.742 Å) um einen Mittelwert von 2.685 Å (2.706 Å). Die deut-Überschreitung liche der Radiensumme  $r_{\rm Na}({\rm KZ8}) + r_{\rm F}({\rm KZ6}) = 2.51 \text{ Å} (26) \text{ ist gut mit}$ der Tatsache vereinbar, daß Na2 in beiden Verbindungen die größten Temperaturfaktoren von allen Atomen zeigt (s. Tab. III).

Die Koordinationspolyeder von Na1 and Na3 stellen verzerrte hexagonale Bipyramiden dar, in deren gewellter Basisfläche jeweils ein besonders großer Abstand von knapp über 3 Å vorkommt. Trotzdem sind die resultierenden Mittelwerte für die acht Abstände, die für beide Verbindungen und beide Natrium innerhalb der Standardabweichung gleich sind und Na-F = 2.60 Å betragen, kleiner als bei Na2. Dies ist eine Folge der kurzen achsialen (a) Abstände von Na1- $F_a = 2.272/2.421$  Å (2.276/2.436 Å) und besonders extrem Na3 $-F_a = 2.102/2.146$  Å (2.102/2.178 Å). Vergleichbare Werte wurden mit Na $-F_a =$ 2.160/2.268 Å für die analoge Koordination des einen Natriumions im Weberit Na2NiFeF, beobachtet (7).

Typisch sind derartig kurze F-Na-F-Achsen für die gewellt hexagonal bipyramidale Achterkoordination in den Pyrochloren, z.B. NaCdNi₂F₇ mit Na/Cd-F = 2.20 Å (2, 21). Die oben aufgeführte Unterschreitung dieses Wertes stellt allerdings ein neues Extrem dar. Jedoch sind für die  $\beta$ -Na₂Ta₂O₃F₂-Struktur, die eine Mischung von Pyrochlor- und Weberit-Elementen darstellt, kürzlich ebenfalls Werte bis herab zu Na-O/F = 2.136 Å in analoger Koordination berichtet worden (27).

Während die erwähnten kurzen F-Na-F-Achsen in den Pyrochloren und praktisch auch im Weberit Na₂NiFeF₇ linear sind, treten in der Struktur von Na₂MnFeF₇ Abweichungen von der Linearität auf, die etwa 5° (Na1) bzw. 15° (Na3) betragen. Wie im Weberit sind es jedoch auch hier die terminalen Fluorliganden der beiden FeF6-Oktaeder, die mit dem Gegenion Natrium die genannten kurzen Bindungen eingehen. Im Falle von Na3 zeigt sich besonders deutlich, daß in den entsprechenden Richtungen auch die kleinsten Temperaturschwingungen  $(B_{33})$  auftreten, die bei den Natriumionen in Na₂MnFeF₇ bzw. Na₂MnVF₇ überhaupt beobachtet wurden (s. Tab. III). Eine plausible Erklärung für die bei Na3 festgestellte Auslenkung von der speziellen Punktlage (3b), die in y-Richtung etwa 15 bis 45 mal größer als die Standardabweichung  $\sigma_{\rm v}$  ist, fehlt uns allerdings. Die Besetzung der speziellen Lage (3b) anstelle einer der beiden nahe benachbarten Positionen, die durch die allgemeine Lage (6c) beschrieben werden, würde-unter Beibehaltung des x-Parameters-den mittleren Abstand Na-F kaum verändern. Im wesentlichen wären dann die in Tab. V angegebenen aufgespaltenen Abstandspaare durch ihren Mittelwert zu Insbesondere tritt keine ersetzen. so des (gemittelten) kleinsten Veränderung Abstandes Na3- $F_a = 2.124$  Å (Na₂MnVF₇: 2.140 Å) ein.

#### Isostrukturelle Verbindungen

Die beschriebene Na₂MnFeF₇-Struktur, die auch für die Vanadiumverbindung im einzelnen belegt ist, tritt zweifellos noch bei anderen Ionenkombinationen, insbesondere mit Mangan, auf. Anhand von Pulveraufnahmen konnten wir eine entsprechende Phase bei Na₂MnGaF₇ (a = 7.395(1), c = 18.110(4) Å) nachweisen. Rein konnten wir sie dort jedoch nicht erhalten; eine stets begleitende und bei Darstellungstemperaturen oberhalb von 600°C allein auftretende zweite Phase konnte noch nicht im Einzelnen untersucht werden. Auch die von uns synthetisierten Eisen(II)Verbindungen Na₂FeFeF₇ (a = 7.431(2), c = 18.258(6) Å) und Na₂FeVF₇ (a = 7.436(1), c = 18.262(5) Å) kristallisieren nach Pulveraufnahmen in der Na₂MnFeF₇-Struktur. Hier konnten begleitende Fremdphasen jedoch als Weberite identifiziert werden, die z.T. schon beschrieben sind (3).

Die genannten Beobachtungen lassen vermuten, daß die Vergrößerung des M^{II}-Ions  $(r_{\rm Fe} = 0.78, r_{\rm Mn} = 0.83$  Å) (26) die Na₂MnFeF₇-Struktur im Vergleich zu der des Weberits begünstigt. Wie Versuche zeigten, geht dies jedoch nicht soweit, daß auch noch mit Cadmium ( $r_{cd} = 0.95$  Å) Verbindungen Na₂CdM^{III}F₇ mit Na₂MnFeF₇-Struktur gebildet würden. Angesichts der mit Neutronenbeugung erhaltenen Hinweise auf eine teilweise Mn/Na-Mischung erscheint es nicht ausgeschlossen, daß die Tieftemperaturform des Chioliths,  $\alpha$ -Na₅Fe₃F₁₄, als Substitutionsstruktur im Sinne von 2Mn^{II} ≙ Na^IFe^{III} in Na₄  $(NaFe)Fe_2F_{14} \cong 2Na_2MnFeF_7$  aufzufassen ist. Die angegebenen monoklinen Gitterkonstanten ( $\beta \approx 90^{\circ}$ ) dieser als pseudotrigonal bezeichneten Verbindung (28, 29) stehen in auffälliger Beziehung zur Na2MnFeF7-Zelle (in orthohexagonaler Aufstellung): a/4 =18.31 Å (c = 18.26), b = 7.46 Å (a = 7.49), c= 12.72 Å (a (3)^{1/2} = 12.97). Neben dieser offenen speziellen Frage ist allgemein noch warum völlig ungeklärt, Fluoride  $Na_{,M^{II}M^{III}F_{,}}$  nie in der Pyrochlorstruktur kristallisieren, die doch in Form der Verbindungen vom  $RbNiCrF_6$ -Typ (21, 30) so vielfach variierende Kationen in ihrem Oktaedernetz adaptieren kann.

#### Dank

Den Herren Dr. A. Tressaud und J. M. Dance (Bordeaux), danken wir für wertvolle Diskussionen und die Überlassung von Einkristallen für die Neutronenuntersuchung. Herrn Dr. G. Heger und der Gesellschaft für Kernforschung (Karlsruhe) sind wir für die uns eingeräumten Möglichkeiten dankbar, am FR2-Reaktor Neutronenbeugungsmessungen durchzuführen. Für Unterstützung durch Sachmittel gilt unser Dank der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie.

#### Literatur

- 1. J. CHASSAING, C. R. Acad. Sci. C 268, 2188 (1969).
- 2. R. HÄNSLER UND W. RÜDORFF, Z. Naturforsch. B 25, 1306 (1970).
- R. Cosier, A. Wise, A. TRESSAUD, J. GRANNEC, R. OLAZUAGA, UND J. PORTIER, C. R. Acad. Sci. C271, 142 (1970).
- 4. A. TRESSAUD, J. M. DANCE, J. PORTIER, UND P. HAGENMULLER, Mater. Res. Bull. 9, 1219 (1974).
- 5. A. BYSTROM, Ark. Kemi Mineral. Geol. B 18, 1 (1944).
- J. PEBLER, K. SCHMIDT, D. BABEL, UND W. VERSCHAREN, Z. Naturforsch. B 32, 369 (1977).
- 7. R. HAEGELE, W. VERSCHAREN, D. BABEL, J. M. DANCE, UND A. TRESSAUD, J. Solid State Chem. 24, 77 (1978).
- A. TRESSAUD, J. M. DANCE, J. M. PARENTEAU, J. C. LAUNAY, J. PORTIER, UND P. HAGENMULLER, J. Cryst. Growth 32, 211 (1976).
- 9. U. MÜLLER, CADLP, Algol-Programm zur Lorentz-Polarisationskorrektur von Diffraktometerdaten, Marburg (1971).
- R. HAEGELE UND W. VERSCHAREN, DATAX, Programm zur Datenreduktion, Marburg (1975).
- X/RAY 9, Kristallographisches Programmsystem, Texas University, Version (Dezember 1972).
- 12. P. MAIN, M. M. WOOLFSON, UND G. GERMAIN,

MULTAN, Programmsystem, Brookhaven National Laboratory (November 1973).

- International Tables for X-Ray Crystallography, Vol. 1, Birmingham (1969).
- 14. W. R. BUSING, K. O. MARTIN, UND H. A. LEVY, ORFLS, Oak Ridge National Laboratory, Report ORNL-TM-305 (1962).
- P. A. DOYLE UND P. S. TURNER, Acta Crystallogr. A 24, 390 (1968).
- 16. C. G. DARWIN, Philos. Mag. 43, 800 (1922).
- 17. W. H. ZACHARIASEN, Acta Crystallogr. 16, 1139 (1963).
- NUCLS5, Least Squares-Verfeinerungsprogramm des X-Ray 9 Systems (11).
- 19. O. BECKMAN, Acta Crystallogr. 13, 506 (1960).
- 20. W. H. BAUR, Acta Crystallogr. 11, 488 (1958).
- 21. D. BABEL, Z. Anorg. Allg. Chem. 387, 161 (1972).
- 22. G. HEGER, R. GELLER, UND D. BABEL, Solid State Commun. 9, 335 (1971).
- 23. D. BABEL, F. WALL, UND G. HEGER, Z. Naturforsch B 29, 139 (1974).
- 24. R. HAEGELE, W. VERSCHAREN, UND D. BABEL, Z. Naturforsch. B 30, 462 (1975).
- 25. F. WALL, G. PAUSEWANG, UND D. BABEL, J. Less Common Metals 25, 257 (1971).
- 26. R. D. SHANNON, Acta Crystallogr. A 32, 751 (1976).
- M. VLASSE, J.-P. CHAMINADE, J.-C. MASSIES, UND M. POUCHARD, J. Solid State Chem. 12, 102 (1975).
- 28. K. KNOX UND S. GELLER, Phys. Rev. 110, 771 (1958).
- 29. A. TRESSAUD, J.-M. DANCE, M. VLASSE, UND J. PORTIER, C. R. Acad. Sci. C 282, (24) 1105 (1976).
- 30. D. BABEL, G. PAUSEWANG, UND W. VIEBAHN, Z. Naturforsch. B 22, 1219 (1967).